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Abstract

High-resolution marine data are critical to evaluating anthropogenic im-
pacts on our environment. Considering the spatial and temporal limitations
of direct instrumental measurements, proxy data extracted from marine en-
vironmental archives are necessary to separate anthropogenic changes from
those that would occur naturally. The majority of late-Holocene, high res-
olution environmental reconstructions are derived from marine carbonates
including tropical scleractinian corals, bivalves, crustose coralline algae, and
sclerosponges. However, these archives are restricted to the top hundreds of
meters of the water column, and only preserve environmental variability that
is captured by calcium carbonate skeletons. At a very few select locations,
marine sediments archive annual environmental variability in organic and
inorganic materials. Recently, additional types of corals are proving to yield
information complimentary to these traditional marine archives, including
cold water scleractinian corals and proteinaceous corals. A taxonomically-
diverse group, the proteinaceous corals are broadly defined as those having
a branching gross-morphology with skeleton comprised at least partly of
protein-rich organic material. They encode characteristics of their food and
ambient environment into the chemical and physical composition of their
skeleton. This environmental-encoding combined with their banded skele-
ton and significant longevity means that proteinaceous corals hold informa-
tion in their skeleton that helps fill the spatial and temporal gaps in our
knowledge of past and present ocean conditions.

Here I review the environmental reconstructions derived from geochem-
ical measurements of the proteinaceous coral skeletons. This information
is grouped into the mesopelagic environmental variability captured in the
skeleton of bamboo corals, surface processes captured in the organic skele-
tons of corals across all ocean depths, and environmental variability docu-
mented by skeletal radiometric isotopes. We include animals from two sepa-
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rate subclasses within the class Anthozoa, including the parasitic Zoanthids
that secrete a sclero-proteic skeleton. Since the proteinaceous corals are tax-
onomically diverse, we consider the unique features that define this group of
corals including their distribution, morphology, nutrition, and longevity. We
find that uncertainty surrounding biological parameters limits the precision
of reconstructions derived from the calcitic skeleton; in contrast, analytical
effort and cost constrains the number of reconstructions from the organic
skeleton. Through this discussion, we provide insights into the uses, chal-
lenges, and directions for future research for this important environmental
archive.

Keywords: corals, paleo-environmental proxy archives, organic skeleton,
calcite, stable isotope geochemistry, trace element composition,
radiometric dating

1. Introduction1

The ocean is sensitive to environmental change, continuously experi-2

encing and responding to variability in terrestrial inputs, atmospheric cir-3

culation, temperature, climate, productivity, cataclysms, and biodiversity4

(Levin and Le Bris, 2015; Hutchins and Fu, 2017; Yool et al., 2015; Jickells5

and Moore, 2015; Caesar et al., 2018). Direct measurements and monitor-6

ing of seawater conditions may capture this environmental variability; yet,7

these measurements are limited in time and space. Indeed, reliable instru-8

mental measures of seawater conditions are restricted to the period after9

the mid-19th century (Woodruff et al., 2005) with the quality and variety10

of measured parameters largely constrained by technology (Kennedy, 2014).11

In fact, the uncertainty of these measurements decreases substantially only12

after the 1970s, in part because of the advent of satellites (Kennedy, 2014;13

Loveland and Dwyer, 2012). Furthermore, the spatial coverage of direct14

measurements is confined by the difficulties inherent to accessing remote ar-15

eas of the ocean: instrumental time series are particularly limited in higher16

latitudes and generally devoid of detailed environmental information be-17

yond temperature prior to the past several decades (Overland et al., 2012;18

Walsh et al., 2018). This lack of direct measurements is particularly worri-19

some in the context of global climate change: high-resolution data of ocean20

conditions are critical to constrain the anthropogenic component of recent,21

unprecedented changes (Neukom et al., 2019; Wu et al., 2019). Fortunately,22

a myriad of proxy records reconstructing environmental conditions can be23

extracted from geological and biological archives (Mackintosh et al., 2017;24
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Jones et al., 2009; Henderson, 2002), formed over much longer expanses of25

time and from greater spatial areas than direct measurements. Such recon-26

structions are pivotal to our understanding of the past ocean environment27

(Nair and Mohan, 2017; Burke and Robinson, 2012; Freund et al., 2019;28

Thornalley et al., 2018), long before direct measurements were possible.29

Therefore, these archives fill the spatial and temporal gaps in our knowl-30

edge of past and present ocean conditions.31

Reconstructions derived from proxy measurements of environmental32

archives provide a means to evaluate natural variability prior to any an-33

thropogenic influence. Furthermore, reconstructions of ”natural” variability34

can serve as testing beds for evaluating mechanisms and feedbacks driving35

environmental change. For example, an analysis of a suite of proxy pale-36

oclimate records, many ocean derived (PAGES2k Consortium, 2017), re-37

constructed multidecadal temperature fluctuations spanning the past 200038

years; this work highlighted the spatial coherency of the recent and unparal-39

leled warming (PAGES 2k Consortium, 2019; Neukom et al., 2019). Matched40

with natural climate forcings, the temperature reconstructions identified the41

role of volcanism in pre-industrial climate variability. Moving beyond tem-42

perature, the carbon isotopic composition of marine calcifiers capture the43

chemical signature of dissolved inorganic carbon (DIC) in seawater. The44

DIC in turn captures the flux of anthropogenic carbon into the ocean, since45

carbon derived from the burning of fossil fuels has a distinct carbon iso-46

tope signature (Swart et al., 2010; Bacastow et al., 1996). Carbon isotopes47

combined with trace elements (e.g., barium) prior to the industrial revo-48

lution document changing high latitude primary productivity with links to49

sea ice cover and solar insolation (Hou et al., 2018; Chan et al., 2017). The50

nitrogen isotopic composition in the marine calcifiers document primarily51

shifts in nitrogen source to a region (typically reflecting changing ocean cur-52

rents), although this proxy can also capture changes in productivity and53

trophic structure (Whitney et al., 2019; Gillikin et al., 2017). In a few select54

locations anoxic conditions prevent bioturbation of marine sediments, yield-55

ing annually-laminated sequences capturing environmental change, typically56

changes in in situ primary production versus terrestrially-derived (eolian or57

riverine) materials (Hughen et al., 1996; Thunell et al., 1993; Romero et al.,58

2009; Lawton et al., 2003).59

However, these proxy archives are not without their challenges (Schöne,60

2013; Hetzinger et al., 2016; Hughes and Ammann, 2009). In tropical sclerac-61

tinian corals (Table 1), compounding evidence suggests that biological effects62

obscure some of the environmental signals encoded into the skeleton. For63

example, coral growth typically positively correlates with seawater temper-64
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ature such that warmer temperatures generate faster growth (Saenger et al.,65

2009); yet our current unprecedented warming may exceed the thermal max-66

imum in some species (Lough et al., 2018). Where the thermal maximum67

is exceeded, temperatures may in fact reduce growth; thus, warm temper-68

atures may both increase and decrease growth (Anderson et al., 2017). In69

turn, growth rates and other biological (”vital”) effects may alter skeletal70

geochemistry during the process of crystal calcification, making accurate71

extraction of an environmental signal difficult (Saenger et al., 2008; Cohen72

et al., 2006; Robinson et al., 2014). For example, calcification rate may73

determine incorporation of elements into the skeleton more so then environ-74

mental characteristics (Shirai et al., 2005). Similar issues are present in other75

high-resolution marine archives: in bivalves, temperature and seawater δ18O76

composition combine to determine the oxygen isotopic composition of the77

mollusc skeleton, meaning that interpretation in variability of only one of78

these parameters is challenging (Wanamaker et al., 2007). Many trace ele-79

ments in bivalves vary with organismal growth and metabolic processes also80

making it difficult to extract an environmental signal (Elliot et al., 2009).81

In sclerosponges, the absence of consistent periodicity of growth bands pre-82

vents accurate chronological assignment to time in the skeleton (Swart et al.,83

2002). For crustose coralline algae, significant specimen-specific variability84

suggests that replication is needed to reduce uncertainty around reconstruc-85

tions (Williams et al., 2017a; Halfar et al., 2011). In the sediments, ocean86

locations with anoxic conditions are rare, thus annually-laminated marine87

sediments are geographically restricted (Lawton et al., 2003). Finally, re-88

cent work has shown that small errors in chronological uncertainty can sig-89

nificantly alter interpretation of environmental variability (Comboul et al.,90

2014).91

Proteinaceous corals are proving to be important archives of past ocean92

conditions over multiple spatial and temporal scales: their growth can span93

up to multiple millennia (Roark et al., 2009) and their distribution extends94

throughout the global ocean (Figure 2). Taxonomically, they are colonial95

Anthozoans in the phylum Cnidaria, including two suborders (Holaxonia and96

Calcaxonia) and one subgroup (Scleraxonia) of Alcyonaceans (soft corals or97

gorgonian corals) in the subclass Octocorallia, and two orders Antipathar-98

ians (black corals) and some Zoanthids (gold corals) in the subclass Hexa-99

corallia (Figure 1) (van Ofwegen, 2018). The unifying feature of proteina-100

ceous corals is that they accrete biomass that includes recalcitrant protein101

and contains organic matter derived from seawater and dietary sources. The102

skeleton archives ambient environmental conditions because: 1) it is both103

protected by a continuous external tissue layer and resistant to diagenesis104
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even when exposed to seawater, 2) forms as a core in concentric, coeval105

bands such that the outer layer of skeleton is the most recently formed, and106

3) captures environmental variability in its physical, chemical, and/or bio-107

logical properties (Sherwood et al., 2006; Williams et al., 2006; Risk et al.,108

2002). In some species, the formation of both organic and inorganic skeleton109

provide dual recorders of ambient and surface water processes (Griffin and110

Druffel, 1989). Because of these traits, sclerochronological and geochemical111

techniques can extract approximately annually-resolved records of a broad112

range in environmental variability over the past several thousands of years.113

Figure 1: Taxonomic relationship from the World Register of Marine Species (van Ofwe-
gen, 2018) of the major proteinaceous coral families considered for environmental recon-
structions.

To date, records of seawater temperature (Thresher et al., 2010), nitro-114

gen fixation (Sherwood et al., 2013), ocean circulation (Williams and Grot-115

toli, 2010a), land use change (Prouty et al., 2014), phytoplankton dynamics116

(McMahon et al., 2016), water mass reservoir age (Komugabe et al., 2014),117

and terrestrial effluent (Risk et al., 2009b) have been reported over various118
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timescales from both deep and shallow-water proteinaceous coral specimens.119

Yet, there remain substantial gaps in our understanding of how the records120

are incorporated and preserved in the corals. This review aims to provide121

a synthesis of the current knowledge of proteinaceous coral skeletal charac-122

teristics, including methods for incorporation of environmental signatures123

in the skeleton and chronological assignment with associated uncertainties.124

At the same time, I provide a comprehensive review of the environmental125

reconstructions derived from this group of corals with a discussion on the126

emerging techniques and the current limitations in extracting environmental127

variability from the coral skeletons. This work helps to frame our recom-128

mendations for advancing the field of environmental reconstructions from129

these important archives.130

2. Characteristics of proteinaceous corals131

2.1. Distribution132

The distribution of proteinaceous corals is determined largely by habi-133

tat requirements, and not limited by latitude or depth. They are found134

throughout the world’s oceans from the tropics to the poles (Figure 2), and135

from surface waters to greater than 8600 m (Wagner et al., 2012; Pasternak,136

1977). Black corals are largely deep-sea taxa, with approximately 75% of137

the nearly 250 species found deeper than 50 m (Cairns, 2007). Similarly,138

several prominent families of gorgonian Octocorals are found in the deep-139

sea (Perez et al., 2016; Zapata Guardiola et al., 2012). In some species,140

temperatures does restrict latitudinal and depth distribution (Mortensen141

and Buhl-Mortensen, 2004; Wagner et al., 2012). Otherwise, most species142

require hard substrate or host organism for which to settle on and larger-143

scaled topographic features to create strong and regular currents to provide144

food (Wagner et al., 2012; Mortensen and Buhl-Mortensen, 2004; Gori et al.,145

2011; Giusti et al., 2014; Edinger et al., 2011; Sinniger et al., 2013). The pro-146

teinaceous corals also require low-sedimentation environments to reduce the147

occurrence of smothering (Mortensen and Buhl-Mortensen, 2004; Wagner148

et al., 2012). Finally, distribution of some species is a function of ecological149

connectivity and habitat selection by larvae (Jordán-Dahlgren, 2002; Lasker150

and Kim, 1996). Where the corals are able to settle with suitable habitat,151

they can sometimes reach significant densities, becoming the dominant eco-152

logical organisms and/or supporting significant diversity of other organisms153

(Wagner et al., 2012; Cerrano et al., 2010; Grigg, 1977; Stone et al., 2015).154
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Figure 2: Map of gorgonian coral locations identified from the Smithsonian Institution
(https://deepseacoraldata.noaa.gov).

2.2. Morphology155

The proteinaceous corals are ahermatopic, colonial organisms with an156

epithelial tissue covering a scleroproteic skeleton. The coral’s epithelial tis-157

sues secrete the scleroproteic skeleton in concentric layers around a central158

core. The core itself may be solid, hollow, or even another organism. This159

skeleton builds up over time into significant growth structures: individuals160

attaining several meters in width and height are not uncommon (Figure 3)161

(Grigg, 1965; Lasker and Sanchez, 2002; Leversee, 1976).162

The gross colony morphology of skeletons varies widely from unbranched163

and wire-like to heavily branched and arborescent. The gross colony mor-164

phology of proteinaceous corals is likely an adaptation to microhabitat and165

functional niche: the smaller and more irregular bushy gorgonian Primnoa166

resedaeformis is adapted to variable currents in near-bottom environments167

while Paragorgia arborea is generally taller and wider, adapted to reach-168

ing above the turbulent near-bottom currents (Buhl-Mortensen and Buhl-169

Mortensen, 2005). The stiffness of the skeleton varies with environment as170

well: corals with rigid and inflexible skeletons are generally found in calm,171

deep-water environments while taxa with more flexible skeletons are more172

prevalent in high-energy areas (Esford and Lewis, 1990). Arborescent mor-173
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phologies are advantageous since branch bifurcation increases colony sur-174

face area. The increased surface area provides more support for resource175

acquisition, waste removal, gas exchange and reproductive tissues; the lat-176

ter being a benefit that is particularly important to old colonies (Brazeau177

and Lasker, 1992). In addition to surface area, reduced polyp size is also178

linked to productivity in symbiotic gorgonians (Baker et al., 2015). As a179

result, morphological characters such as colony shape and polyp sizes may180

be convergent amongst the diverse groups of proteinaceous corals but serve181

different functions for acquiring nutrition (Porter, 1976). Convergent evo-182

lution is supported by the different taxanomic relationships amongst the183

morphologically-similar proteinaceous corals (Figure 1).184

2.3. Nutrition185

Most proteinaceous corals are omnivorous suspension feeders, exploiting186

a wide variety of food sources (Elias-Piera et al., 2013). These food sources187

include zooplankton (Coma et al., 1994), microplankton (Ribes et al., 1998),188

suspended particulate organic matter (POM) (Lasker, 1981; Williams and189

Grottoli, 2010b), sinking POM (Roark et al., 2005; Sherwood et al., 2005a;190

Druffel et al., 1995) and dissolved organic matter (Murdock, 1978). The size191

of their food source ranges from 4 µm (nanoeukaryotes) to several hundred192

microns (seston particles) (Ribes et al., 2003). A corals adaptability to a193

diversity of food sources makes use of seasonal fluctuations in food supply194

(Coma et al., 2000). For example, shallow water gorgonians can shift from195

a plankton-dominated diet in winter to resuspended organic matter in the196

summer when plankton concentrations decline (Cocito et al., 2013) along197

with shifting the size class of its diet based on the natural abundance of prey198

items (Leal et al., 2015). Since gorgonian’s store energy primarily as lipids,199

and reductions in food availability may reduce lipid (energy) reserves (Rossi200

et al., 2006; Rossi and Tsounis, 2007), an opportunistic feeding strategy may201

reduce stress to the corals. In deep-water corals, the primary food source202

is POM produced in the surface waters that has sunk to depth (Griffin and203

Druffel, 1989; Sherwood et al., 2005b; Roark et al., 2006).204

In addition to heterotrophy in proteinaceous corals, a diversity of gor-205

gonians found in warm, sunlit waters use photoautotrophic food obtained206

from Symbiodinium (dinoflagellate microalgae) symbionts located within the207

polyp endoderm (Kanwisher and Wainwright, 1967). In fact, the net gain208

of carbon from Symbiodinium photosynthesis may be similar to many scle-209

ractinian corals (Kanwisher and Wainwright, 1967). This, combined with210

contraction of gorgonian polyps at night when other species are actively cap-211

turing prey, suggests a predominantly autotrophic nutrition in some of these212
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corals (Wainwright, 1967). Similarly, heterotrophy supplies less than 20% of213

the annual nitrogen demand in symbiotic gorgonians with rod morphologies214

and large polyps (Ribes et al., 1998). Thus, nitrogen must be coming from215

Symbiodinium to meet the metabolic demands of growth and reproduction.216

However, while most symbiotic gorgonians benefit at least somewhat from217

Symbiodinium photosynthesis, only species with high polyp and colony-level218

surface area:volume are net autotrophs (Baker et al., 2015).219

Black coral nutrition is largely reliant on heterotrophy, and not depen-220

dent on Symbiodinium (Wagner et al., 2012): Hawaiian black corals live in221

low-light environments that do not support photosynthesis even when they222

are living with intercellular Symbiodinium (Wagner et al., 2012). In deep-223

water corals, the functional role of the symbiont to the coral is unknown.224

3. Taxonomic considerations225

Proteinaceous corals are gorgonian corals, black corals, and some zoan-226

thids in the class Anthozoa of the phylum Cnidaria (Figure 1). Anthozoans227

are exclusively polypoid, and may be colonial, clonal, or solitary, skeleton-228

less or with a mineralic and/or proteinaceous skeleton (Daly et al., 2007).229

They are divided into the subclasses Octocorallia and Hexacorallia. The230

Octocorallia have eight tentacles and eight mesenteries of octocoral polyps231

(Bayer, 1981) while the Hexacorallia generally have hexamerous symme-232

try, although eight- or ten-part symmetry is present. All Hexacorallia have233

spirocysts, a type of cnida with a singlewalled capsule and a tubule com-234

posed of tiny entangling sub-threads (Mariscal et al., 1977), and includes235

the Antipatharia and Zoanthidea (Daly et al., 2007).236

Species identifications are sometimes problematic, as descriptions are237

made from inadequate specimens and/or the type specimen is not avail-238

able (Daly et al., 2007; Wagner et al., 2012). In addition, advancements in239

molecular techniques are refining taxonomic relationships.240

3.1. Gorgonians241

Gorgonian is the common name for Octocorallia falling within the sub-242

orders Holaxonia and Calcaxonia, and the subordinal group Scleraxonia of243

the order Alconacea (Horvath, 2019; Daly et al., 2007); they were formerly244

within the order Gorgonacea, a term which is no longer taxonomically ac-245

cepted (van Ofwegen, 2018; Perez et al., 2016; Grasshoff, 1999). Gorgonian246

corals are sometimes colloquially referred to as sea whips or sea fans. The247

common feature of these corals is soft tissue encompassing the coenchyme248

and covering the coral animal polyp that secretes a scleroproteic skeleton249
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comprised of some combination of non-scleritic calcite and gorgonin (Daly250

et al., 2007). In the tissue, calcite sclerites provide skeletal support and251

protection, and are one of the primary taxonomic identifiers (Bayer, 1961).252

The gorgonin material in the skeleton is a structural, fibrillar organic keratin-253

like protein material with a heterogenic chemical composition (see review by254

(Ehrlich, 2019)). The relative amounts and arrangement of the gorgonian255

and calcite skeleton varies among species and taxa. The Holaxonians form256

an axial skeleton derived largely of layered gorgonin fibers built around a hol-257

low, cross-chambered central core. Small amounts of embedded calcite are258

sometimes deposited in non-scleritic calcareous inclusions (Figure 3) (Bond259

et al., 2005; Lewis et al., 1992; Daly et al., 2007). The Calcaxonians form a260

solid axial skeleton of gorgonian with large amounts of non-scleritic calcite261

with no central hollow core (Daly et al., 2007). The Scleraxonia form an ax-262

ial (or axial-like) skeleton of sclerites which can be fused together or bound263

by gorgonin (Horvath, 2019; Daly et al., 2007).264

Figure 3: Proteinaceous corals viewed in situ (A) Black coral (Antipathes grandis), (B)
Primnoid gorgonian coral (Primnoa pacifica), (C) Scleraxonian gorgonian coral (Coral-
lium elatius), and (D) Gold corals (Kulamanamana haumeaa). Photos from (A) Hawaii
Undersea Research Laboratory, provided by Daniel Wagner, (B) Alaska Fisheries Science
Center, provided by Bob Stone, (C) (Nonaka et al., 2012), and (D) (Sinniger et al., 2013).

The gorgonin in the skeleton provides flexibility to an otherwise rigid265

calcified skeleton (Grasshoff and Zibrowius, 1983; Lewis et al., 1992; Wain-266
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Figure 4: Cross-section and banding patterns in (A-B) Black corals, (C-D) Primnoid
gorgonian, (E) Bamboo gorgonian coral with skeletal branch showing node and internode
with cross-section sin subset, (F) Scleraxonian gorgonian coral, and (G-H) Gold coral
showing the zoanthid subsuming a bamboo coral host. Photos from (A) (Hitt et al.,
2020), (B) (Prouty et al., 2011), (C) (Williams et al., 2019), (E) (Hill et al., 2014), (F)
(Hasegawa et al., 2012), (G-H) (Sinniger et al., 2013).

wright and Dillon, 1969). Gorgonin contains significant concentrations of267

glycine, proline, hydroxyproline, and hydroxylysine with 1% by weight268

concentrations of saccharides, glucose and galactose, suggesting that col-269

lagen is a major structural component of the gorgonin (Szmant-Froelich,270

1974; Goldberg, 1978, 1976). In addition, the skeleton is rich in tyrosine271

and quinones-containing compounds, an important tanning agent promot-272

ing cross-linking of protein chains in the gorgonin (Goldberg, 1976). The273

gorgonin composition provides the mechanical flexibility that lets the corals274

grow in high velocity areas but may eventually not be able to structurally275

support very tall (>1 m) specimens (Wainwright and Dillon, 1969; Ehrlich,276

2019). The calcite in gorgonian corals is composed of high-Mg calcite precip-277

itated from surrounding seawater DIC (Noé and Dullo, 2006; Roark et al.,278

2006), with some contribution of metabolically produced carbon dioxide in279

the sclerites of some species (Lucas and Knapp, 1997). The formation of280

calcite is induced in vitro because of an extracellular protein, even when281

the calcifying solution favors aragonite precipitation (Rahman et al., 2011).282

The sclerites are small (10-100 µ m) polycrystalline aggregates of the mag-283
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nesium calcite forming spindle-shaped rods covered with small protrusions284

and embedded in the coenenchyme. Functionally, the sclerites limit com-285

pression and extension of the axial skeleton (Lewis and Wallis, 1991) and286

structural defense against predators (West, 1998). In the same species, the287

sclerites also contain insoluble organic matrices that are predominately col-288

lagenous (Kingsley, 2013). In the Holaxonians the axis may be contain289

non-scleritic calcareous deposits (loculi) while the Calcaxonians may have290

significant amounts of non-scleritic calcareous material, either embedded or291

as internodes between gorgonin nodes. In the Scleraxonia, the axial skeleton292

is comprised primarily of sclerites and may have minimal to no gorgonin,293

although are often still included as gorgonian corals (Horvath, 2019). In294

deep-water Calcaxonians reaching significant size, skeletogenesis shifts from295

the calcite-organic alterations to fibrous Mg-calcite skeleton encompassing296

the central axis (Noé et al., 2008). The causes of this could be due to the297

lower energy costs of forming calcite versus gorgonin skeleton, potentially298

related to shifts in food availability (Mistri, 1996) or shifts in hydrographic299

regimes requiring stiffer axial structures (Noé et al., 2008).300

The banding in gorgonian corals occurs within both the gorgonin and301

calcite fraction of the skeleton and/or by alteration of calcite and gorgonin302

in the skeleton (e.g., Figure 3). In the gorgonin, more cross-linkages be-303

tween the protein chains have higher tyrosine content, producing a darker304

(”tanned”) colour (Goldberg, 1976; Szmant-Froelich, 1974). The degree of305

cross-linkages directly reflects the amount of time the axial skeleton re-306

mains in contact with the epithelium such that periods of faster growth307

result in fewer cross-linkages with less tyrosine and lighter skeleton while308

slower growth creates more time for cross-linkages with higher tyrosine and309

darker skeleton (Goldberg, 1976; Szmant-Froelich, 1974). As a result, band-310

ing within the gorgonin skeleton may reflect changes in growth in response311

to coral biology or environmental variability, such food availability (Szmant-312

Froelich, 1974).313

Within the calcite skeletal fraction, bands are formed because of varia-314

tions in crystal growth combined with inclusion of organic matter. Calcite315

fibers nucleate on calcification centers or gorgonin surfaces and then grow316

spherically to form crescent shaped fibrous crystal bundles. Repetition of317

crystal growth and nucleation events laterally fuse together to create bands318

(Risk et al., 2002). In Calcaxonian Isididae corals, changes in orientation of319

the crystal bundles surrounding by thin organic seams relative to the plain320

of imaging also contribute to the banding patterns (Noé and Dullo, 2006).321

The longitudinal axes of the crystals are oriented parallel to the section plan322

in the darker rings while they are oriented oblique to vertical in the lighter323
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bands. Changes in biomineralization likely determine the orientation of the324

crystals. In the same corals, there are no changes in density of the crystal325

structure contributing to the banding structure (Noé and Dullo, 2006), un-326

like calcium carbonate scleractinian corals. In Scleraxonia, annual banding327

patterns relate to the concentration of organic matter such that seasonally,328

higher concentrations of organic matter are present, or might not be present329

at all (Marschal et al., 2004; Mortensen and Buhl-Mortensen, 2005). Gor-330

gonin may be present in the calcite skeleton, forming an insoluble structural331

framework surrounding the crystal. In this role, gorgonin scaffolds the calcite332

but does not initiate biomineralization (Ehrlich, 2019). Foreign particulate333

organic matter is also incorporated into the skeleton along growth bands,334

but probably only in significant accumulations during growth hiatuses (Noé335

and Dullo, 2006).336

In gorgonian corals forming alternating couplets of calcite-gorgonin skele-337

ton, the calcite secretions by the coral may be constant while fluctuating338

rates of gorgonin production produce the calcite-gorgonin banding. Since339

the biosynthesis of the gorgonin skeleton requires more energy than the340

secretion of a calcite crust, pulses of increased food may trigger the pro-341

duction of gorgonin (Noé et al., 2008). Food availability as a trigger is342

consistent with formation of the dark, more gorgonin-rich portion of the343

calcite-gorgonin ring couplet coinciding with the the spring/summer plank-344

ton bloom in Primnoa resedaeformis (Sherwood et al., 2005b).345

Some gorgonian corals form their bands annually: shallow water gor-346

gonians Muricea californica and Muricea Fruticosa (Grigg, 1974) and the347

deep-sea Tasmanian Keratoisis (Thresher et al., 2004) form annual bands348

in either the gorgonian or calcite fraction of the skeleton while Primnoa349

resedaeformis forms annual couplets of gorgonin and calcite (Andrews et al.,350

2002; Sherwood et al., 2005b). In the Isididae Lepidisis sp., counts of the cal-351

citic banding in the internode combined with 210Pb dating suggest the bands352

form bi-annually, with two light and dark couplets deposited per year. How-353

ever, scanning electron microscopy of the calcite internode produced much354

higher band counts, potentially driven by the downward transport of organic355

blooms associated with lunar cycles (Tracey et al., 2007; Roark et al., 2005).356

P. resedaeformis forms sub-annual banding of unknown periodicity that is357

evident within their annual bands (Risk et al., 2002) Thus, clear annual358

or lunar bands are not evident in all gorgonian coral taxa (Martinez-Dios359

et al., 2016); nor are they consistently present even within specimens of the360

same taxa at different locations or using different band counting techniques.361

These discrepancies perhaps reflects stability in local environments, timing362

of reproduction, and/or food abundance (Grigg, 1974; Buhl-Mortensen and363
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Mortensen, 2005). Taken together, environmental conditions with strong364

seasonal fluctuations drive annual periodicity in skeletal banding in the gor-365

gonian corals rather than a characteristic inherent to a specific coral genus366

itself; however, additional unknown mechanisms driving banding are present.367

3.2. Black corals368

Black corals are the common name for families within the order An-369

tipatheria, which is comprised of seven families all under the umbrella of370

proteinaceous corals (Figure 1). They have six unbranched tentacles, six pri-371

mary mesenteries, and zero, four, or six secondary mesenteries. The number372

of mesenteries and the morphology of the corallum, polyps, and axial spines373

are the principal taxonomic characters used in classification (Opresko, 2006;374

Wagner et al., 2010), although DNA sequencing is becoming more common375

(Brugler et al., 2013). The spines radiate from the central growth axis out-376

ward (Goldberg, 1991); likely serving to strengthen the skeleton (Kim et al.,377

1992).378

The skeleton in black corals is entirely proteinaceous (no calcium car-379

bonate) with a significant contribution from a chitin-like polysaccharide.380

The skeleton in the genera Antipathes is comprised primary of non-fibrillar381

protein (60%), chitin fibrils (15%), and other minor contributions of lipid,382

carbohydrate, phenols, and sterols (Goldberg, 1991; de la Rosa et al., 2007).383

The amino acid composition of the protein fraction is 35% glycine, 15% ala-384

nine, and 13% histidine with 4-6% serine, glutamine, and leucine, and less385

than 4% of 11 other amino acids. These corals have the highest concentra-386

tion of halogens (iodine and bromine) in a biological material (Goldberg,387

1978), although concentrations of these halogens vary in the skeleton, likely388

in response to environmental availability (Goldberg, 1978; de la Rosa et al.,389

2007; Williams and Grottoli, 2011; Prouty et al., 2018).390

The banding in black corals is formed by layers of chitin fibrils. The391

corals accrete the chitin molecules which connect by hydrogen bonds to392

form sheets with proteins. The proteins attached to the chitin sheets group393

together through cross-linking to form growth layers building the hardened394

skeleton (Kim et al., 1992; de la Rosa et al., 2007)). The periodicity of395

these growth layers (rings) varies among taxa: rings are formed daily in396

Stichopathes gracilis (Noome and Kristensen, 1976), annually in Antipathes397

spp. (Williams et al., 2006; Grange and Goldberg, 1993), or with no identi-398

fied periodicity in Bathypathes patula (Marriott et al., 2020).399
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3.3. Gold corals400

Marine organisms within the order Zoanthidea (= Zoantharia, Zoanthi-401

naria) are clonal, soft bodied polyps with two rows tentacles, and a sin-402

gle ventral siphonoglyph linked together by a coenenchyme (Daly et al.,403

2007). Of the zoanthids, those classified as proteinaceous corals are the404

taxa that secrete a scleroproteic skeleton (Sinniger et al., 2013) through405

parasitizing other proteinaceous coral skeletons (Sinniger et al., 2005; Cer-406

rano et al., 2010). Initial taxonomic classification was done by morphology407

based mostly on septa characteristics (Ryland and Lancaster, 2003), with408

more recent work using rRNA to infer molecular phylogeny (Sinniger et al.,409

2005). Gold coral is the common name for Kulamanamana haumeaae and410

potentially used synonymously to Savalia (Sinniger et al., 2013). Current411

classification recognizes the genera Kulamanamana and Savalia, both with412

a scleroprotein skeleton and both which may have previously been referred413

to as Gerardia (Cerrano et al., 2010; Parrish and Roark, 2009; Griffin and414

Druffel, 1989).415

The scleroproteinaic skeleton of the zoanthid resembles that of other416

proteinaceous corals: it is rich in histidine and glycine, the latter which417

may provide structural strength to the skeleton by tightly binding protein418

polymers through hydrogen bonding (Druffel et al., 1995; Sherwood et al.,419

2013). It also forms growth layers, potentially analogously to the black420

corals (Griffin and Druffel, 1989; McMahon et al., 2016). Unique to these421

zoanthids is that the secreted skeleton is dependent on a host skeleton, and422

often actually ends up subsuming the original host (Parrish, 2015).423

4. Geochronology424

Accurate dating of proteinaceous corals is critical to assigning time to425

environmental records derived from their skeletons. Annual bands in corals426

collected live from a known date provide the best chronologies (e.g., annual427

resolution within minimal uncertainty). In the absence of annual bands or428

in corals collected dead, geochemical dating techniques provide estimations429

of time in the skeleton. The duration of the corals, both as living organisms430

and also preservation of the skeleton once dead, informs the periods of time431

for which environmental information is captured by these corals.432

4.1. Geochemical dating techniques433

Radiocarbon measurements in the organic skeleton yields chronological434

information in two ways. The first method measures the amount of radio-435

carbon in the skeleton to backtrack the amount of time that has passed since436
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the skeleton was formed, based on the radioactive decay of 14C with a half437

life of 5730 years. This technique requires information about the amount of438

14C in the atmosphere at the time of the skeletal formation, and a correc-439

tion, termed the marine reservoir age, to account for the difference between440

the atmospheric 14C content and the local 14C content of the seawater which441

ends up in the food to the corals (Stuiver and Braziunas, 1993; Griffin and442

Druffel, 1989). Thus, the usefulness of 14C dating is limited by knowledge443

of past seawater 14C variability driven by seawater circulation changes and444

natural or anthropogenic changes in local seawater 14C and the calculation445

of an accurate correction value (Druffel et al., 1995). In addition, local vari-446

ability in the marine reservoir age and atmospheric variability result in the447

possibility of multiple calibrated ages, yielding numerous potential ages of448

the skeleton.449

The second method by which radiocarbon measurements can provide450

chronological control is through correlation of anthropogenic perturbations451

in atmospheric radiocarbon content with known timing in the skeleton of452

the coral colonies. Anthropogenic burning of fossil fuels since the 1850s is453

emitting 14C-depleted carbon into the atmosphere. The 14C-depleted carbon454

dissolves into the surface waters, reducing the 14C content of the mixed sur-455

face layer (Keeling, 1979; Tans et al., 1979), and decreasing the 14C content456

of proteinaceous coral skeletons formed in the early-to-mid 1900s. Beginning457

in the 1950s, thermonuclear bomb-testing increased the 14C content in the458

atmosphere by an order of magnitude, resulting in a near doubling of the459

radiocarbon content of the surface oceans by the mid-to-late 1970s. Since460

then, the excess 14C in surface water has been decreasing due to radioac-461

tive decay and mixing with low-14C content deeper waters. The increase462

and subsequent decrease in 14C content is measurable in the ocean surface463

waters. The 14C perturbation is incorporated into the marine carbon cycle,464

then into the food source to the corals, and finally into the coral skeletons.465

Coral skeletal measurements of 14C through time in the skeleton can iden-466

tify the start of 14C-bomb carbon mixing into the oceans in the mid-1950s,467

peak in the late 1970s, and subsequent decline in values to the present day.468

Through identification of these time points, including a known date of collec-469

tion, three time points can be assigned to skeletal growth providing the basis470

for a first order chronology (Figure 5) (Roark et al., 2006, 2005; Sherwood471

et al., 2005b; Prouty et al., 2014; Williams and Grottoli, 2010a).472

Radiocarbon measurements of the calcitic portion of deep-sea proteina-473

ceous coral skeletons does not yield chronological information. Instead, the474

carbon in the calcite skeleton of these corals is incorporated from ambi-475

ent carbon at the depth of the coral and not derived from organic carbon476
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Figure 5: Radiocarbon (14C) measured across two cross-sections of the axial skeleton of
a bamboo coral showing bomb-carbon derived from surface waters encapsulated in the
organic internode and 14C from ambient water at depth in the calcitic internode. Figure
from Roark et al. (2005).

exported from the surface (Figure 5). Thus, these corals capture the 14C477

content of the dissolved inorganic carbon at depth, which reflects oceano-478

graphic processes (Griffin and Druffel, 1989; Roark et al., 2005).479

The decay of 210Pb measured in the organic skeleton of proteinaceous480

corals provides estimates of specimen age (Andrews et al., 2002). The low481

solubility of lead in the water column causes it to adhere to particulate482

matter that is the food source to proteinaceous corals, forming a source of483

exogenous (or unsupported) 210Pb (210Pbex) to the skeleton. Since decay of484

the 210Pb starts after incorporation into the skeleton, the amount of 210Pbex485

remaining in the skeleton can provide an estimate of the time that has passed486

since the skeleton was formed, once the additional sources of 210Pb in the487

skeleton are accounted for. Since the half life of 210Pb is relatively short488

(22.26 years), measuring 210Pbex can determine the age of coral skeletons489

that are less than a century old. Beyond this, the amount of 210Pb will490

decrease to background levels. Additional sources of lead (supported and in-491

growth fractions) include detrital particles in the water column derived from492

the decay of 238U and the in situ decay of 226Ra taken up from the skeleton493

during skeletal formation. The supported and in-growth fractions are likely494

negligible in specimens in which the asymptote of the curve of measured495

210Pb against time is essentially zero and do not need to be accounted for496

in determining 210Pbex (Williams et al., 2006).497
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Amino acid racemization measures changes in amino acid molecules that498

occur at a set rate. In corals, the ratio of D- to L-handed isomers in aspartic499

acid moves toward an equilibrium value once the skeleton is formed. The500

rate of equilibrium is a function of age and temperature. Thus, if tempera-501

ture is constant as it is in the deep sea, than the amount of the D-isomer can502

be used to calculate age (Goodfriend, 1992). Amino acid racemization has503

successfully determined age in a fossil specimen of Primnoa resedaeformis504

with an error marginally better than that of 14C dating over the past 100-505

200 years or where the model 14C ages are invalid (50-90 years BP AD 2000)506

(Sherwood et al., 2006). Prior to 200 years BP, the error associated with the507

D/L age exceeds that of 14C and post 1960, bomb-carbon provides better508

age estimates than the amino acid racemization. In gorgonians, the fibrillar509

nature of the protein has caused problems with the use of acid racemization:510

experiments heating the skeleton likely overestimate racemization rates, re-511

sulting in younger apparent ages. The overestimation from heating likely512

explains the discrepancy between amino acid racemization-determined ages513

of 250 years and radiocarbon-derived age of 1800 years for Salvia (= Ger-514

ardia) (Collins and Riley, 2000; Goodfriend, 1997; Sherwood et al., 2006;515

Reimer and Sinniger, 2010).516

U/Th-dating is used to provide chronological control of skeletal growth517

by determining the level to which the the radioactive isotope 234U has de-518

cayed into its daughter isotope 230Th. The extent of the decay reflects519

the amount of time that has passed since the skeleton was formed. In520

the ocean, 234U co-precipitates from the seawater into the skeleton during521

skeletal formation while 230Th concentrations are often negligible (Edwards,522

2003; Adkins, 1998). Thus, the age of the coral skeleton is determined by523

calculating the measured amount of 230Th to accumulate from the decay524

of 234U, as the isotopes moves toward secular equilibrium (Adkins, 1998;525

Bradley, 1999). While this dating technique is used in shallow water and526

deep-sea scleractinian corals (Cheng et al., 2000; Schröder-Ritzrau A., 2005;527

Cobb et al., 2003), it has not been heavily applied to the calcitic skeleton in528

proteinaceous corals: in gorgonian corals, low amounts of uranium, particu-529

larly relative to potential contamination, make dating with U/Th difficult,530

and some taxa (Coralliidae) display display U-series open-system behaviour531

making U/Th dating completely unsuitable in these corals (Sinclair et al.,532

2011; Thresher et al., 2004; Robinson et al., 2007; Gutjahr et al., 2013). In533

contrast, antipatharians have sufficient concentrations and display U-series534

closed system behaviour; U/Th-dating is successfully used in these corals535

(Komugabe et al., 2014; Komugabe-Dixson et al., 2016).536
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4.2. Longevity, Growth, and Fossil Preservation537

Extreme longevity is reported in some taxa of proteinaceous corals: both538

antipatharians and gold corals can live for centuries to millennia (Komugabe-539

Dixson et al., 2016; Roark et al., 2009; Hitt et al., 2020; Prouty et al.,540

2015; Marriott et al., 2020). For the antipatharian corals, growth rates and541

longevity may be taxa specific such that slower growing species live longer542

(Hitt et al., 2020). In contrast, maximum reported ages for gorgonians are543

in the decades to centuries with one reported colony exceed a millennium544

in age (Martinez-Dios et al., 2016; Sherwood and Edinger, 2009; Prouty545

et al., 2015). Broadly, deep-water taxa tend to grow slower and live longer546

than shallow-water taxa. Both decreasing temperatures with depth and547

lower availability of surface-derived food to deeper specimens could drive548

this depth-growth relationship (Thresher, 2009; Roberts et al., 2009). Verti-549

cal growth (linear extension) rates within a single coral colony may remain550

constant through time (Thresher, 2009) or more commonly decrease with551

age such that colony height rarely exceeds one meter in gorgonians (Andrews552

et al., 2002; Coma et al., 1998; Mitchell et al., 1993; Buhl-Mortensen and553

Buhl-Mortensen, 2005). The strength of the coral connection to the sub-554

stratum may ultimately drive coral size/height (Kinzie and Robert, 1973);555

the connection of which is a reflection of strong skeletal composition and556

moderate ocean currents providing food but not physical stress. However,557

vertical growth rates also vary through the course of a year; this variabil-558

ity is likely linked to temperature fluctuations, changes in food availability559

(Coma et al., 1998) and/or changes in respiration related to oxygen diffu-560

sion into the coral tissues as a function of changing water current altering561

boundary layer thickness (Sebens, 1987). And, predation by other organisms562

may reduce vertical growth: algae abrading branching tips or consumption563

by fish may slow growth or even erode colony apical tissue (Grigg, 1974).564

Taken together, many of the factors driving longevity and vertical growth565

are taxonomic and location(habitat)-specific, and the oldest corals may be566

those taxa with the strongest skeletons growing in communities dominated567

by few organisms (reducing competition and predation) and with optimal568

environmental conditions (moderate currents with low sedimentation rates).569

Once dead, the tissue layer recedes and the skeleton is exposed to seawa-570

ter. Skeletal preservation in the proteinaceous corals relates more to com-571

position than taxa: calcitic skeletal fragments and holdfasts are reported in572

the geological record from the early Cenozoic and even as far back as the573

Lower Ordovician (Giammona and Stanton, 1980; Cope, 2005; Stolarski,574

1996). The organic component of the skeleton is vulnerable to microbial ac-575

tivity, sponge and bivalve boring, leaving the skeleton weakened and prone576
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to decay (Noé et al., 2007; Grasshoff and Zibrowius, 1983). In fact, the577

gorgonian Paragorgia has little preservation once dead, degrading to just578

the calcite spicules within a year (Edinger and Sherwood, 2012). In other579

species, consistency in skeletal amino acid composition is preserved few at580

least a few thousand years (Sherwood et al., 2006), and Primnoid gorgonin581

is preserved back to 10,880, albeit with some evidence of bioerosion (Noé582

et al., 2007). Similarly, sub-fossil gold corals dating back approximately583

10,000 years have been reported (Parrish and Roark, 2009). In Antipathar-584

ians, the chitin-like components components of the skeleton do not preserve585

well (Gupta and Briggs, 2011) although the phosphatised skeletons dating586

back to the Ordovician are reported (Baliński et al., 2012; Baliński and Sun,587

2017).588

5. Mesopelagic seawater reconstructions from the calcitic skeleton589

Reconstructions from the calcitic skeleton in gorgonian corals are largely590

limited to bamboo corals. As the bamboo corals grow vertically, their skele-591

ton alternates between forming calcitic nodes interspersed between organic592

internodes. Both the nodes and internodes grow radially with age so contin-593

uous measurements across the radius of the calcitic node spans the lifespan of594

the coral. The source of elements to the calcitic skeleton is typically ambient595

dissolved elements. As a result, environmental changes in ambient dissolved596

elements are encoded in the isotopic composition of the coral calcitic intern-597

odes. However, encoding of that environmental signal is complicated: the598

biomineralization pathways leading to the calcite precipitation produces a599

mineral with an isotopic composition that is offset from seawater. If the600

offset is not constant, then this ”vital” effect signal obscures any environ-601

mental signal captured in the skeleton. Here we explore investigations into602

overcoming the influence of vital effects on coral skeletal composition.603

5.1. Isotopic composition604

The source of carbon to the calcite in deep-sea bamboo corals is ambient605

dissolved inorganic carbon (Roark et al., 2006) with δ13Cseawater values of606

approximately 0.5 to 2.5 h (Gruber et al., 1999). However, vital effects607

alter the δ13Ccoral from that of seawater, generating values ranging from608

-5.5 to 2 h (Hill et al., 2014). These vital effects are potentially enhanced609

during the linear extension phase of the central core axis of these corals,610

as δ13Ccoral in the central core are commonly 1 h depleted relative to rest611

of the specimen (Hill et al., 2014). Furthermore, δ13Ccoral values varied 3612

h within a single year in one specimen (Hill et al., 2014). In the calcitic613
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sclerites of shallow-water gorgonian corals, vital effects impacting the pro-614

portion of metabolic carbon uptake during calcification is potentially related615

to variations in growth rates or ontogenetic effects (Grossowicz et al., 2020).616

Thus the vital effect-driven offset in δ13Ccoral values is not constant, and617

cannot be accounted for with a simple offset correction factor. For these618

reasons, direct interpretation of environmental variability from the calcitic619

δ13C values is difficult (Farmer et al., 2015).620

The boron isotopic composition of marine calcifiers broadly reflects the621

isotopic composition of borate in seawater, which in turn reflects the pH of622

seawater (Hemming and Hanson, 1992; Zeebe and Wolf-Gladrow, 2001). In623

Atlantic Ocean bamboo corals, δ11Bcoral in recently formed skeleton matches624

that of the isotopic composition of borate anion in seawater, calculated as625

a function of seawater pH (Farmer et al., 2015). However, the wide range626

in δ11Bcoral values within these specimens exceeds that which can be ex-627

plained by variability in seawater pH alone. In addition, in eastern Pacific628

specimens, δ11Bcoral is elevated 0.2 to 2 h higher than calculated for each629

specimen based on ambient seawater pH (Farmer et al., 2015). Therefore,630

in bamboo corals, the environmental signal of seawater pH encoded in the631

δ11Bcoral values reflects that of ambient seawater with some additional im-632

print due to coral’s biological processes when saturation state is greater than633

1 (e.g., in the Atlantic Ocean). Conversely, seawater with calcite saturation634

less than 1, active modification of pH during coral calcification disconnect635

δ11Bcoral from the ambient seawater pH (Farmer et al., 2015). In the calcitic636

skeleton of Scleraxonian corals, the δ11B composition is similar to that of the637

bamboo coral, and both are lower than that of deep-sea scleractinian corals638

(McCulloch et al., 2012; Rollion-Bard et al., 2017). This might suggest that639

gorgonian corals play less of an active role in controlling the calcifying fluid640

pH than scleractinian corals (Rollion-Bard et al., 2017).641

The oxygen isotopic composition of seawater and the temperature at the642

time of calcite calcification determines the δ18O composition of marine calci-643

fiers (Shackleton, 1974). For the deep-sea bamboo corals, the δ18Oseawater is644

likely consistent over the lifespan of the corals because the surface processes645

of precipitation/evaporation and sea ice formation/melt that change the646

seawater δ18O composition don’t impact deep water on the timescales that647

these corals live. As a result, seawater temperature should be retrievable648

from the δ18Ocoral values. However, vital effects offset the δ18O compo-649

sition of the corals from seawater (Hill et al., 2011; Kimball et al., 2014;650

Thresher and Neil, 2016). Since this offset is not consistent (Hill et al.,651

2011), the offsets confounds efforts to retrieve seawater temperature from652

the δ18Ocoral values directly. The deviations in δ18Ocoral from equilibrium653
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(e.g., the magnitude of the offset) are associated by proportional deviations654

in δ13Ccoral from equilibrium. Therefore, the slope of the δ18O-δ13C rela-655

tionship finds the δ18O value when δ13C is at equilibrium. This δ18Ocoral656

value can then be used to back track seawater temperature (Hill et al.,657

2011), as has been demonstrated in deep-sea aragonitic scleractinian and658

stylasterid corals (Smith et al., 2000; Samperiz et al., 2020). Initial stud-659

ies used δ13Ccoral-δ
13CDIC = 0 h to determine the δ13Ccoral equilibrium660

value; however, there is no a priori reason why δ13Ccoral is equal to δ13CDIC661

(Saenger and Erez, 2016): the δ13Ccoral may itself be offset from equilib-662

rium. More recently, a δ13Ccoral equilibrium value was calculated using an663

ion-by-ion model of calcite growth (Saenger and Erez, 2016). The model of664

calcite growth requires growth rates and pH as inputs, which can determined665

from radiometric dating and δ11B measurements, respectively (Saenger and666

Erez, 2016). The calculated growth rates and pH, thus, determines the pre-667

cision of the proxy-derived temperatures, with current estimates limiting668

the reconstructed temperature uncertainty to ±2 − 3◦C (Saenger and Erez,669

2016).670

A second approach to extracting temperature from the calcitic skeleton671

of deep-sea corals is the clumped isotopic composition (∆47) of the skele-672

ton. This technique measures the degree to which rare isotopes bond with673

each other versus bonding to the more abundant isotope. In calcium car-674

bonate calcifiers, the deviations in abundance of 18O13C bonds relative to675

a stochastic distribution of carbon isotopologues can vary with tempera-676

ture (Eiler, 2007). The ∆47 value depends on the internal isotopic exchange677

between isotopes in a single phase, and as a result, the ∆47 value is indepen-678

dent of the bulk skeletal isotopic composition (Schauble et al., 2006). Thus,679

the clumped isotope technique is advantageous because it does not require680

either the equilibrium value of the δ18Ocoral nor the bulk δ18Oseawater to681

extract temperature. However, the ∆47 value is sensitive to pH and vital682

effects in marine calcifiers (Tripati et al., 2015; Kluge et al., 2014; Eiler,683

2011). Potentially because of the role of vital effects, the ∆47 value in the684

gorgonian corals is depleted relative to other measured carbonates, result-685

ing in different ∆47-temperature calibrations between deep-sea scleractinian686

corals and gorgonian corals (Kimball et al., 2016). Specifically, gorgonian687

corals calcify from a DIC pool with higher CO2−
3 and moderately elevated688

pH than abiogenic experiments which may impact the skeletal ∆47 value689

(Saenger et al., 2017). The use of this technique to accurately and precisely690

reconstruct past seawater temperature might be therefore dependent on de-691

termining calcifying fluid pH in each calcifier. The calcifying fluid pH can be692

back tracked from δ11B measurements of the skeleton but this measurement693
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would introduce similar uncertainties as determining the equilibrium value694

for δ13Ccoral.695

5.2. Elemental composition696

Finally, Mg/Ca ratios in coral calcitic skeleton may recflect ambient sea-697

water temperatures. In high-Mg calcite, the substitution of Mg for Ca into698

the CaCO3 lattice is an endothermic reaction: thus, the ratio of Mg/Ca in699

the calcite skeletons of marine organisms varies with seawater temperature700

(Lea et al., 1999). In gorgonian corals, sclerite Mg/Ca ratios are gener-701

ally higher in warmer-water shallower specimens than colder-water deeper702

specimens, although this relationship may vary among species (Weinbauer703

and Vellmirov, 1995; Maté et al., 1986; Velimirov and Böhm, 1976). Within704

a single shallow-water gorgonian, temperature effects Mg/Ca values with705

a sensitivity of 0.47 mmol/mol per ◦C (Bond et al., 2005), although the706

temperature effect on Mg/Ca values may be non-linear (Weinbauer and707

Vellmirov, 1995; Matsumoto, 2007). For example, the relationship depends708

on the ambient temperature in deep-water corals: T(◦C) = 0.048Mg/Ca +709

0.50 (mmol/mol) within a range of 3-6◦C while T(◦C) = 0.19Mg/Ca - 12.31710

within a range of 5-10◦C (Sherwood et al., 2005c; Thresher et al., 2010).711

In addition, reproducibility of Mg/Ca profiles within a single colony is low,712

indicating influence of variables in addition to temperature driving skeleton713

Mg/Ca values. These variables may include disparate radial growth results714

limiting accuracy of assigned chronologies, instrumental uncertainty, vari-715

able vital effects related to growth rates, incorporation of organic material,716

and seasonality of the proxy (Sherwood et al., 2005c; Sinclair et al., 2011;717

Aranha et al., 2014; Vielzeuf et al., 2013). As a result, these studies suggest718

that Mg/Ca-temperature proxy is sensitive to temperature changes occur-719

ring on the timescales of five years and longer (Sinclair, 2005; Flöter et al.,720

2019).721

Environmental effects on gorgonian Sr/Ca values vary. In shallow-water722

taxa, the Sr/Ca composition of the calcite sclerites varied in colonies across723

depths in water with consistent Sr/Ca ratios and did not correlate with tem-724

perature (Weinbauer and Vellmirov, 1995; Bond et al., 2005). This suggests725

a potential growth effect on Sr incorporation into the skeleton (Weinbauer726

and Vellmirov, 1995). In deep-sea Primnoa resedaeformis, Sr/Ca values727

broadly correlate to temperature, which could either reflect either a direct728

temperature influence or an indirect relationship between Sr content and729

growth rates or seawater content (Heikoop et al., 2002). In deep-sea bam-730

boo corals, Sr/Ca values tracked seawater Sr/Ca ratios (Figure 6), with some731

small unexplained intrinsic variability that did not vary with growth rates,732
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Figure 6: Sr/Ca ratios measured across the calcitic nodes in two bamboo coral recording
ambient seawater Sr/Ca content. Figure from Hill et al. (2012).

temperature, or on annual timescales (Hill et al., 2012; Sinclair et al., 2011;733

Thresher, 2009; Thresher et al., 2009, 2010). In summary, Sr/Ca may vary734

intrinsically in all gorgonian corals but may also be influenced by growth735

rates in faster growing shallow-water taxa (Weinbauer and Vellmirov, 1995)736

and the seawater Sr/Ca content in slower growing deep-water taxa (Wein-737

bauer and Vellmirov, 1995; Hill et al., 2012).738

In deep-sea bamboo corals, generally reproducible replicate time series of739

Ba/Ca within a single specimen supports an environmental driver of Ba/Ca740

values (Serrato Marks et al., 2017; Thresher et al., 2016; Sinclair et al., 2011;741

Strzepek et al., 2014). Furthermore, the Ba-isotopic composition of the742

corals may record ambient seawater Ba-isotope chemistry (Geyman et al.,743

2019). The environmental driver is likely ambient seawater Ba incorpo-744

rated into coral skeleton via cationic substitution because the slope relating745

skeletal to seawater Ba/Ca values is similar between bamboo corals from dif-746

ferent locations (LaVigne et al., 2011; Thresher et al., 2016). Although the747

timescales of the intracolony reproducibility varies among colonies (indicat-748

ing some intrinsic variability), filtering time series Ba/Ca data and averaging749

multiple transects can extract the environmental-derived Ba contributions750

to improve the quality of seawater Ba/Ca reconstructions (Serrato Marks751

et al., 2017; Sinclair et al., 2011).752
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6. Reconstructions of surface processes from the organic skeleton753

6.1. Stable isotopic composition754

The stable isotopic composition of a proteinaceous coral’s polyp and755

skeletal tissues are determined by the food to the corals and the coral’s756

biochemical pathways that synthesize new tissue biomass from that food757

(Heikoop et al., 2002; Sherwood et al., 2005a; McMahon et al., 2018). Con-758

sequently, the carbon and nitrogen stable isotopic composition of the coral759

skeleton yields information about source nutrients and a coral’s biological760

processes. However, extracting information from the coral stable isotopic761

composition is complicated because unique biochemical pathways charac-762

terize the formation of the two types of coral tissue resulting in skeleton763

with higher δ13C values and lower δ15N values than polyp tissue (Sherwood764

et al., 2005a; McMahon et al., 2018). The systematic offsets between the765

tissues means that the corals’ biological processes are modifying the sta-766

ble isotopic information from the food recorded in the corals polyps and/or767

skeleton.768

The offset in stable isotopic composition may reflect differences in either769

the amino acid composition or the isotopic composition of individual amino770

acids, as the isotopic composition of amino acids varies (McClelland and771

Montoya, 2002; Keil and Fogel, 2001). For carbon, the amino acids separate772

into two groups: essential amino acids that the corals obtain from their food773

and non-essential amino acids that the corals can synthesize themselves. The774

essential amino acids have unique δ13C values because primary producers775

have a wide diversity in metabolic pathways of essential amino acid synthesis776

(Hayes, 2001; Scott et al., 2006; Larsen et al., 2009, 2013). The δ13C values777

of these essential amino acids (threonine (Thr), leucine (Leu), isoleucine778

(Ile), valine (Val), and phenylalanine (Phe)) are unmodified during trophic779

transfer and the original isotopic composition of the amino acid is preserved780

in the corals (Schiff et al., 2014; McMahon et al., 2016). In contrast, the781

δ13C values of the non-essential amino acids (glutamic acid (Glu), aspartic782

acid (Asp), alanine (Ala), proline (Pro), glycine (Gly), and serine (Ser)) are783

not reflective of the source carbon in the coral’s food and instead can reflect784

biological fractionation occurring within the coral. The minimal offset in the785

δ13C values of both the essential and non-essential amino acids between the786

coral polyp and skeleton in gorgonian corals indicates minimal differences787

in pathways characterizing the movement of these elements from the food788

to the coral polyp and skeleton material (McMahon et al., 2018). Instead,789

the amount of amino acids varies between the coral materials: polyp tissue790

has higher concentrations of essential amino acids and lower concentrations791
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of non-essential amino acids then than the skeleton (Sherwood et al., 2006).792

Therefore, the offset in the carbon isotopic composition of the coral materials793

reflect differences in the abundance of the amino acids and not the isotopic794

composition of the amino acids.795

For nitrogen, the amino acids are generally divided into two groups:796

those that enrich with trophic transfer (Ala, Asp, Glu, Ile, Leu, Pro, Val) and797

those that do not enrich with trophic transfer, i.e., the source amino acids798

(Gly, Lys, Phe, Ser,Tyr) (Chikaraishi et al., 2014; Popp et al., 2007). There is799

a third grouping of amino acids containing Thr, which is metabolically active800

and does not fit into either either of the two main categories (McMahon801

et al., 2018). In P. resedaeformis, the total of 13 amino acids (Asp, Thr,802

Ser, Glu, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe, and Arg) account for 78%803

and 87% of the mass of the tissue and gorgonin, respectively (Sherwood et804

al., 2006). Higher concentrations of the δ15N enriched trophic amino acids805

characterize the tissue of a Primnoid coral which could start to explain the806

δ15N offset. However, the δ15N values of trophic amino acids in tissue are807

consistently enriched by 3-4 h than in the skeleton ((McMahon et al., 2018).808

Therefore, both the amino acid concentrations and isotopic composition of809

the trophic amino acids cause the δ15N offset between the tissue and the810

skeleton.811

In zooxanthellate proteinaceous corals, carbon supplied by the symbiotic812

algae influences the δ13C values of the coral material. The symbiotic algae813

in the zooxanthellate corals derive carbon from ambient dissolved HCO3
−

814

(δ13C of approximately 0.8 h) as a base for photosynthesis. The result-815

ing δ13C values in zooxanthellate coral polyp tissue is higher than that of816

nearby azooxanthellate corals, although the δ13C offset varies among coral817

taxa (Cocito et al., 2013; Baker et al., 2015). Similarly, nitrogen is also818

processed differently in zooxanthallate gorgonians: nitrogen generated as819

metabolic waste products from the coral are re-absorbed by the symbiotic820

algae rather than excreted into the seawater, as in heterotrophic organisms.821

This resorption of enriched nitrogen increases the δ15N composition of the822

polyp tissue (Cocito et al., 2013). As a result, symbiotic algae impact the823

isotopic composition by increasing both the δ13C and δ15N composition of824

zooxanthellate corals.825

Combined with the biological processes, the food source to the coral de-826

termines its isotopic composition. The diversity in food sources to shallow-827

water and mesopelagic proteinaceous corals complicates interpretation of iso-828

topic measurements of their skeletons (Williams and Grottoli, 2010b; Coma829

et al., 1994; Ribes et al., 1998; Chang-Feng and Ming-Chao, 1993), although830

in some cases dramatic shifts in nutrient sources are evident in the coral831
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isotopic composition (Ward-Paige et al., 2005). Since deep-water corals feed832

primarily on the surface-derived POM (Griffin and Druffel, 1989; Sherwood833

et al., 2005b; Roark et al., 2006), changes in the POM dynamics - either the834

source of the POM to the corals or the isotopic composition of the POM -835

is captured in the coral skeleton. Below we discuss the environmental re-836

constructions extracted from the coral proteinaceous skeleton when stable837

isotopes are measured over the lifespan of a coral colony.838

The δ13C composition of the POM to deep-water corals is driven by839

1) the baseline carbon-source signatures of the dissolved inorganic carbon840

(DIC), 2) that is imprinted upon by fractionation during incorporation into841

organic matter, and 3) subsequent enrichment due to trophic transfer. The842

resulting δ13C values of proteinaceous corals range from -20 to -15 h (Sher-843

wood et al., 2005a; Williams et al., 2006). While changes in any of the steps844

in carbon processing from the baseline DIC to incorporation into the coral845

will change the δ13C composition, time series records of coral δ13C largely846

track anthropogenic changes in the baseline carbon-source signature of the847

DIC (Baker et al., 2010b; Williams et al., 2007a,b). These anthropogenic848

changes manifest as the 13C-Suess effect, the gradual depletion of δ13C val-849

ues of atmospheric carbon over the past several decades resulting from the850

burning of 13C-light fossil fuels (Keeling, 1979). This isotopically-depleted851

carbon has entered the marine carbon cycle, depleting δ13CDIC values and852

thus also δ13CPOM values and δ13Ccoral (Quay et al., 2003; Bentaleb and853

Fontugne, 1996; Williams et al., 2007a,b; Sherwood et al., 2005a; Baker854

et al., 2010b).855

In some cases, proteinaceous corals document 13C values that decline856

at a faster rate than the 13C-Suess effect, or do not document the 13C-857

Suess effect at all. These corals are thought to be capturing changes in858

primary productivity, changes in terrestrial contribution to the baseline DIC,859

or a shift in food source (Druffel et al., 1995; Williams et al., 2007b; Ward-860

Paige et al., 2005). For example, skeletal δ13C records in shallow-water861

zooxanthellate gorgonians decrease with a shift to heterotrophic feeding with862

increased terrestrial dissolved organic matter (Ward-Paige et al., 2005).863

Measuring the 13C composition of the essential amino acids in the coral864

skeleton yields additional information to aid in the interpretation of changes865

in bulk skeletal 13C values. Similarities in the δ13C of the essential amino866

acids with bulk δ13C values inform if changes in the bulk δ13C values reflect867

processes occurring prior to carbon incorporation into the coral (Schiff et al.,868

2014). Since the δ13C values of these essential amino acids (EAA) is unique869

to the primary producer that fixes the carbon at the base of the food change,870

the coral δ13CEAA reflects the dominant primary producers. In long-lived871
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proteinaceous corals, shifts in δ13CEAA through the past 1000 years reflect872

changes in the plankton community regimes in the North Pacific Ocean873

that corresponded in timing with regional climate regimes (McMahon et al.,874

2015). The most recent regime spanning less than the past 200 years was a875

cyanobacterial community, characterized by strongly enhanced N2 fixation876

(McMahon et al., 2015). This approach in other proteinaceous corals may877

yield information about environmental reconstructions, in addition to the878

δ13C-Suess effect.879

Time series δ15N measurements from the skeleton of proteinaceous corals880

reconstructs changes in marine nitrogen biogeochemistry. The primary881

drivers of these changes are 1) the baseline nitrogen-source signatures of the882

bioavailable nitrogen to the primary producers, typically nitrate, 2) that is883

imprinted upon by fractionation during incorporation into organic matter884

that feeds the coral, and 3) subsequent enrichment due to trophic transfer.885

The different sources of bioavailable nitrogen and subsequent processing886

of that nitrogen all impacts a unique δ15N signature (e.g., (Owens, 1988;887

Montoya, 2008)) on the food that is available to corals, and thus the δ15N888

composition of the skeleton.889

The main sources of nitrogen to the ocean that determines the baseline890

nitrogen-source signatures are biological nitrogen fixation (Capone et al.,891

1997; Mahaffey et al., 2003), atmospheric deposition (Duce et al., 2008; Fo-892

gel and Paerl, 1993), and terrestrially-derived nitrogen supplied via riverine893

inputs (Walsh, 1991). Additional processes can also provide nitrogen: up-894

welling and vertical mixing of nitrate-rich seawater (Williams et al., 2000;895

Williams and Follows, 1998) and diffusion across the thermocline (Lewis896

et al., 1986; Planas et al., 1999). In nitrate-limited surface waters in which897

all of the biologically available nitrogen is consumed by phytoplankton dur-898

ing primary production, the isotopic composition of generated POM reflects899

that of the source of nitrogen to phytoplankton (i.e. δ15N of the substrate900

nitrogen). In contrast, in surface water where the biologically available ni-901

trogen is not fully consumed, the δ15N composition of the POM depends on902

the degree of nitrogen consumption (Altabet and Francois, 1994; Wu et al.,903

1997; Thibodeau et al., 2017). These fluctuations in δ15NNO3− are incorpo-904

rated into the resulting POM (Wu et al., 1997). Thus, the δ15N composition905

of the food to the corals captures the δ15N signature of the source nitrogen906

to the region and/or nitrate utilization, depending on the regional nutrient907

biogeochemistry.908

The δ15N composition of the POM produced during primary production909

is altered during subsequent incorporation into the larger marine food web.910

Isotopic enrichment during incorporation of the nitrogen into consumers911
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yields higher δ15N values than the food because the 14N-abundant nitrogen912

is more readily excreted then the heavier isotope, leaving the remaining913

organism with enriched δ15N values. This is also true for the proteinaceous914

corals, which are enriched in δ15N relative to their food (e.g., (Sherwood915

et al., 2008)). As a result of this trophic enrichment, bulk δ15N values in916

coral skeletons could also trace changes in the length of the food chain in the917

organisms that contribute materials to the POM feeding the corals (Heikoop918

et al., 2002).919

Time series measurements of nitrogen isotopic composition of the pro-920

teinaceous coral skeleton thus reflects potentially complex changes in the921

environment and ecological structure of the ocean. To date, bulk δ15N922

records document increases in terrestrial effluent to coastal and deep sea923

regions (Baker et al., 2010b; Risk et al., 2009a,b; Sherwood et al., 2010;924

Ward-Paige et al., 2005; Williams et al., 2007b), increasing in agricultural925

fertilizer to coastal oceans (Baker et al., 2010b), and degree of variability in926

oceanic conditions (Williams and Grottoli, 2010a; Sherwood and Edinger,927

2009). However, these changes may occur simultaneously and perhaps offset928

each other. This limits our interpretation of the nitrogen isotopic records929

from these corals.930

Refining interpretation of the bulk nitrogen isotopic composition is ac-931

cessible by measuring the δ15N values of individual amino acids: the δ15N932

value of the source amino acids in the corals reflects the δ15N composition933

of the biologically available nitrogen while the trophic amino acids track the934

number of trophic transfers in the marine food web (Sherwood et al., 2011;935

Williams et al., 2017b). By using this approach, several studies have demon-936

strated significant shifts in source nitrate to a region with no corresponding937

changes in microbial resynthesis and alteration or change in relative trophic938

position of the corals (Figure 7) (Sherwood et al., 2011, 2013; Prouty et al.,939

2014; Williams et al., 2017b). Therefore, similar to carbon, isotopic mea-940

surements of the individual amino acids benefits interpretation of the bulk941

stable isotopic composition of the skeleton.942

6.2. Elemental composition943

In the black coral skeleton, reproducible replicate analyses of trace ele-944

ment concentrations suggest a coherent incorporation of individual elements,945

pointing toward an environmental driver of skeletal trace element concen-946

trations (Williams and Grottoli, 2011). For example, skeletal rhenium and947

iodine concentrations vary with environmental concentrations linked with948

continental material flux to the oceans (Prouty et al., 2014, 2018). The949
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Figure 7: (A) Map of rhenium concentrations in a black coral plotted with bulk δ15N values
through time and (B) change in bulk δ15N values along two transects in a black coral along
with compound specific δ15N measurements of source and trophic amino acids, showing
that changes in source nitrogen values (and not trophic status) drive the enrichment in
bulk values through time. Figure from Prouty et al. (2014).

source of the iodine to the coral skeleton is likely iodine bound to the or-950

ganic particles that the coral feeds on (Prouty et al., 2018). An environ-951

mental driver of iodine in black corals is further supported by co-elevation952

of the isotopic composition of the iodine (129I/127I ratios) in the black corals953

during periods of nuclear bomb-testing: this is consistent with the 129I ra-954

tio in the corals documenting seawater 129I variability (Prouty et al., 2014).955

These results suggest that trace element concentrations, particularly iodine,956

in black corals yield useful environmental information.957

Concentrations of trace elements vary between taxa of proteinaceous958

corals: chromium, nickel, and selenium are elevated and lead is lower in959

black corals than gorgonians (Raimundo et al., 2013; Williams and Grottoli,960

2011). These differences could reflect biological processes of elemental in-961

corporation into the skeleton between the different taxa, or, perhaps more962

likely, differences in ambient environmental concentrations, since gorgonians963

bioaccumulate heavy metals when exposed to heavy metal contaminated sea-964

water (Chan et al., 2012). Concentrations of manganese, zinc, and lead were965

comparable in the skeletons of deep-sea gorgonians from disparate locations,966

while cadmium was lower in colonies from the western tropical Pacific rel-967

ative to the Atlantic Ocean (Williams and Grottoli, 2011; Raimundo et al.,968

2013). The elevated cadmium measurements in the Atlantic gorgonians969
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from the Azores is consistent concentrations in recent sediments from the970

Azores-Iceland Ridge, and could reflect increased concentrations reflecting971

hydrothermal activity (Grousset and Donard, 1984). In addition, the Pacific972

corals were from the mesophotic zone, which typically is lower in cadmium973

then deeper waters (Bruland, 1983). However, despite potential explana-974

tions for bulk differences in trace elements among gorgonian colonies that975

potentially reflects environmental concentrations, trace element concentra-976

tions within a single colony gorgonian were not reproducible in replicate977

analyses through the lifespan of that gorgonian (Williams and Grottoli,978

2011). This points toward limitations in using elemental composition of979

gorgonian corals as archives of environmental changes into the past.980

6.3. Radiometric isotopic composition981

Radiometric measurements of proteinaceous corals largely provide a982

means to develop growth chronologies for the coral skeletons. The excep-983

tion to this is radiocarbon measurements which can also yield information984

about the global carbon cycle. Similar to stable isotopes, the 14C con-985

centration in the skeleton of deep-water proteinaceous corals reflect that986

of the coral’s food, primarily the POM that is rapidly exported from sur-987

face waters (Roark et al., 2009; Sherwood et al., 2005b; Griffin and Druffel,988

1989). In long-lived specimens pre-dating anthropogenic alternations of the989

global 14C cycle (i.e., the 14C-Suess effect and bomb-carbon, see below), the990

amount of 14C measured reflects the relative contribution of older, lower 14C991

and younger, higher 14C seawater to a region. This approach reconstructed992

the relative influence of the East Australian Current to the South Tasman993

through the past 4500 years (Komugabe-Dixson et al., 2016).994

7. Conclusions995

Using geochemical tools, we can extract substantial environmental in-996

formation from the skeletons of the proteinaceous corals. Yet, there are997

challenges in doing so. The calcitic skeleton in most gorgonians corals is998

difficult to physically isolate because it is tightly coupled with the organic999

skeleton (Figure 3). In the bamboo corals with calcite disks, variable growth1000

rates across the radius lowers the resolution of the resulting time series data1001

(Sinclair et al., 2011). However in the bamboo corals, trace elemental con-1002

centrations of the calcite skeletons may track ambient seawater temperature1003

in deeper settings with stable ocean temperatures. When reconstructing1004

past temperature is of interest, there are several potential methods to re-1005

trieve ambient temperature from the skeletons; however, the precision of1006
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the temperature reconstructions are compromised by vital effects or limita-1007

tions on estimating biological parameters to reduce uncertainty. Efforts to1008

improve our understanding of the coral biology, particularly the calcifying1009

fluid pH and growth rates may improve temperature estimates. Alterna-1010

tively, application of newer techniques developed in other marine carbonates1011

may provide estimates for reconstructing past temperatures (Table 1). Al-1012

though, initial studies of newer proxies such as Mg/Li are suggesting unique1013

geochemistry in high-Mg calcite compared to aragonite (Chaabane et al.,1014

2019; Vielzeuf et al., 2018; Stewart et al., 2020; Anagnostou et al., 2019).1015

In the organic skeleton, the proteinaceous corals provide unparalleled1016

records of high-resolution carbon and nitrogen dynamics, surpassing those1017

available from nitrogen incorporated into carbonate skeleton of corals and1018

bivalves. However, interpreting variability in carbon and nitrogen bulk iso-1019

topes can be difficult because of the multiple factors that drive changes in1020

the nutrient composition of the food to the corals. Measuring the isotopic1021

composition of the individual amino acids provides substantially more in-1022

sights into nutrient cycling but these measurements are time consuming and1023

expensive. Furthermore, the period in which a coral’s food is assimilated1024

into their skeleton is unknown as is mechanisms driving sub-annual banding.1025

Efforts into understanding the processes by which the corals incorporate nu-1026

trients into their skeleton, any resulting alteration of the chemistry of those1027

nutrients, and the time frame for which this occurs would improve strategi-1028

cally sampling and interpreting skeletal measurements.1029

Despite the challenges, the extreme longevity in some of the proteina-1030

ceous corals combined with their widespread distribution across the shallow1031

to deep ocean means that they can provide critical data to identify mecha-1032

nisms of natural and anthropogenic ocean variability. The largest challenges1033

are conservation of the corals from large-scale fishing while at the same time1034

providing means for deep-sea exploration to locate and selectively collect1035

the invaluable environmental archives.1036
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Chaabane, S., López Correa, M., Ziveri, P., Trotter, J., Kallel, N., Dou-1166

ville, E., McCulloch, M., Taviani, M., Linares, C., Montagna, P., 2019.1167

Elemental systematics of the calcitic skeleton of Corallium rubrum and1168

implications for the mg/ca temperature proxy. Chemical Geology 524,1169

237–258. doi:10.1016/j.chemgeo.2019.06.008.1170
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Table 1: Example reconstructions of environmental variability derived from proxies archived in high resolution marine archives.

Archive Material Proxies Reconstruction References

Scleractinian Inorganic δ18O temperature (Carriquiry et al., 1988)

corals δ18O seawater δ18O/salinity (Wellington et al., 1996)

δ13C DIC/δ13C-Suess effect (Swart et al., 2010)

δ13C terrestrial contributions (Moyer and Grottoli, 2011)

δ13C photosynthesis/heterotrophy/respiration (Grottoli, 2000; Allison and Finch, 2012)

δ15N seawater δ15N /nutrient dynamics (Murray et al., 2019)

δ11B seawater pH/calcifying fluid pH (McCulloch et al., 2012; Anagnostou et al., 2012)
14C reservoir age (Yu et al., 2010; Hirabayashi et al., 2017)
Nd isotopes seawater Nd isotopic composition (Copard et al., 2010; van de Flierdt et al., 2010)
Sr/Ca temperature (Jimenez et al., 2018)
Li/Mg temperature (Cuny-Guirriec et al., 2019; Montagna et al., 2014)
growth rates temperature (Saenger et al., 2009)
density/calcification temperature (Lough and Barnes, 1997)
Ba/Ca, Mn/Ca, Y/Ca riverine flux (Carriquiry and Horta-Puga, 2010; Moyer et al., 2012)

Bivalves Inorganic δ18O temperature / seawater δ18O (Mette et al., 2016; Wanamaker et al., 2008b)

δ15N seawater δ15N (Whitney et al., 2019)
14C reservoir age (Wanamaker et al., 2008a)
growth rates temperature (Poitevin et al., 2019)

Sclerosponges Inorganic δ18O temperature / seawater δ18O (Rosenheim et al., 2009)

δ13C DIC/δ13C-Suess effect (Böhm et al., 2002)
Sr/Ca temperature (Rosenheim et al., 2004)

Crustose Inorganic δ13C DIC/δ13C-Suess effect (Williams et al., 2011)

coralline algae δ13C DIC/productivity (Hou et al., 2018)

δ11B pH (Anagnostou et al., 2019; Fietzke et al., 2015)
Mg/Ca temperature (Williams et al., 2017a)
Mg/Li temperature (Anagnostou et al., 2019)
Ba/Ca seawater Ba/Ca / glacial runoff (Chan et al., 2011)
Ba/Ca seawater Ba/Ca / productivity (Chan et al., 2017)
growth rates temperature + light (Halfar et al., 2011; Adey et al., 2013)

Sediments Combined grey scale/laminar thickness productivity / eolian flux (Hughen et al., 1996; Thunell et al., 1993)
varve thickness terrestrial contributions (Lückge et al., 2001)

Inorganic Cd/Ca upwelling (Reuer et al., 2003)

δ18O seawater temperature (Lückge et al., 2001)
14C radiocarbon calibration (Hughen et al., 1998)
taxa abundance production (Sancetta and Calvert, 1988; Romero et al., 2009)
biogenic silica sedimentation rate (Fan et al., 2011)
Ti/Al fluvial discharge (Lückge et al., 2001)
K/Al eolian input (Lückge et al., 2001)

Organic alkenones seawater temperature (Kennedy and Brassell, 1992)
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Table 2: Reconstructions of environmental variability derived from proxies archived in proteinaceous corals

Coral Skeletal material Proxy Environmental variable References

Shallow water Inorganic δ18O temperature (Chaabane et al., 2016)

gorgonian Organic δ13C δ13C-Suess effect (Baker et al., 2010b)

corals Organic δ15N terrestrial (agricultural fertilizers) (Baker et al., 2010b)

Organic δ15N terrestrial (effluent) (Baker et al., 2010a, 2013; Ward-Paige et al., 2005)
Inorganic Mg/Ca temperature (Chaabane et al., 2019; Maté et al., 1986; Bond et al., 2005)

Bamboo corals Inorganic δ18O temperature (Hill et al., 2011; Saenger and Erez, 2016)
Inorganic ∆47 temperature (Kimball et al., 2016; Saenger et al., 2017)
Inorganic Mg/Ca temperature (Thresher et al., 2010; Flöter et al., 2019)
Inorganic Sr/Ca Sr/Ca content (Weinbauer and Vellmirov, 1995; Hill et al., 2012)
Inorganic Ba/Ca Ba/Ca content (LaVigne et al., 2011; Thresher et al., 2016; Flöter et al., 2019)
Inorganic Ba-isotopes seawater Ba-isotopic composition (Geyman et al., 2019)

Primonidae Organic δ13C δ13C-Suess effect (Williams et al., 2007a)

gorgonians Organic δ15N AA ocean currents (Sherwood et al., 2011)

Organic 14C water mass (Sherwood et al., 2008)

Antipatharians Organic δ13C δ13C-Suess effect (Williams et al., 2007b)

Organic δ13C primary productivity (Williams et al., 2007b)

Organic δ15N terrestrial (effluent) (Williams et al., 2007b; Risk et al., 2009a,b)

Organic δ15N AA riverine nitrate flux (Prouty et al., 2014)
Organic Re terrestrial (agro-industrialization) (Prouty et al., 2014)

Organic 129I/127I nuclear weapons testing (Prouty et al., 2018)

Organic 14C water mass reservoir age (Komugabe et al., 2014; Komugabe-Dixson et al., 2016)

Zoantharians Organic δ13C AA planktonic community composition (McMahon et al., 2015; Glynn et al., 2019)

Organic δ15N AA nitrogen fixation/supply (Sherwood et al., 2013; Glynn et al., 2019)

AA = amino acid
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